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SUMMARY

The near-24-hour SyncomII satellite (with an almost circular orbit) has been under continuous
observation by range and range-rate radar and minitrack stations for 7 months since mid- August
1963, when the orbit was relocated, placing its mean longitude at about 55 degrees west of Green-
wich. During the first 4 months of this period, the satellite was allowed to drift free in the grav-
ity fields of the earth, sun, and moon. In this first free-drift period, the satellite experienced a
mean daily drift acceleration of its ascending node (with respect to Greenwich) of

- (1.27 + .02) X 1072 degrees/day? . (1)
The average growth of the semimajor axis for this period was
(.0993 + .0042) km/day . 2)
These values, checked by a simulated particle trajectory run on the Goddard ITEM program, con-

firm a significant longitude-dependent earth-gravity potential. The existence of a "triaxial earth"
has been a speculation of geodesists since the early years of this century.

During the last 3 months of this 7-month drift period, starting at the end of November 1963,
Syncom II was relocated atgbout 60 degrees west of Greenwich. In this period, the mean daily
drift acceleration of the ascendi de was

- (1.32 £ .02) X 107* degrees/day? . 3)

The average growth of the semimajor axis for this period was
(.0994 + .0080) km/day . 4)
Combining the results of (1) through (4) above for the two separate drift periods, it is estimated

(on the basis of a triaxial geoid only) that the absolute magnitude of the longitude dependent-gravity
coefficient J,, is

Jp = -(L7%.05)x 107,

This value corresponds to a difference in major and minor earth-equatorial radii of
(a.-b.) = 213 + 6 feet .

The best present estimate of the position of the earth's major equatorial axis is

Ay, = 19 + 6 degrees west of Greenwich .



In view of previous estimates of the higher order tesseral harmonics of the earth's field, the
true value of J,,, separated from the small influence of gravity anomalies of third and higher
order on the reduction for a triaxial earth only at ""synchronous' altitudes, will probably be some-
what higher than the -1.7 x 107¢ reported herein. The true value of J,,, however, is not likely to
be greater than -2,2 X 10™® or smaller than -1.6 X 107°. The true location of the earth equator's
major axis is not expected to differ significantly from that reported herein, when all higher tes-
seral harmonics are accounted for. (See Appendix B.)

The reported value of J,, = -1.7 X 107 implies that a maximum tangential velocity correc-
tion of

AV, = 5.36 ft./sec./year

is required to keep a satellite with a 24-hour circular equatorial orbit continuously 'on station"
at a longitude midway between the longitudes of the equatorial major and minor axes of the earth.
The original "conservative" Syncom I design requirement of 4V, = 17 ft./sec./year correction
capability was based on the longitude-dependent earth field of Izsak (January 1961), which is now
outdated. (See Appendix B and Reference 4.)
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INTRODUCTION
SUMMARY OF PREVIOUS INVESTIGATIONS AND DISCUSSION OF RESULTS

The question of the existence and extent of the longitude-dependence of the earth's external
gravity field has concerned geodesists since the early years of this century. (See Reference 1 for
example.) The existence of a longitude-dependent field implies the existence of inhomogeneities
and states of stress within the earth which are of fundamental importance to all dynamical theories
of the earth's interior.

In Appendix B, I have summarized 23 reductions of gravimetric, astro-geodetic, and satellite
gravity data reporting longitude-dependent terms in the earth's external gravity field represented
as a series of spherical harmonics. Ten of these reductions are based on worldwide surface-
gravity measurements only. Although surface measurements have the advantage of providing an
excellent sampling of the field in latitude and longitude, they are seriously affected by even small
uncertainties in station position with respect to the mean earth geoid, as these are of the same
order-of-magnitude as the reported geoid deviations caused by longitude-dependent gravity.

Of the 12 satellite reduced tesseral gravity fields, those of Kozai (1962), Izsak (July 1963),
Kaula (September 1963), and Guier (1963) show good general agreement in the eastern hemisphere
when the constants are used as a set. All of these observers are aware, nevertheless, of the high
degree of uncertainty in the reported values of the individual coefficients themselves, this un-
certainty being due mainly to unresolved station-datum errors and to the limited sampling of the
field from observations on a small number of medium-altitude, medium-inclination satellites.

As late as July 1963, Izsak stated (Reference 2): "It might be some time before one can ar-
rive at definite conclusions regarding the longitude dependence of the earth's gravity field.” The
presence of Syncom II, high over the earth with a nearly stationary, narrow figure-8 ground track
centered close to the equator, dramatically alters this gloomy outlook. The 24-hour satellite is
high enough to be unaffected by the earth's atmosphere, yet is close enough to the earth to be pro-
tected from the solar wind by the ""magnetosphere' of the earth, and to remain essentially unaf-
fected by sun or moon gravity.

In theory, as the ground track is nearly stationary, any small earth-gravity anomaly in longi-
tude will intime, cause significant drift of the ground-track configuration. In theory too, only
observations of the longitude of the satellite from a single ground station are necessary to reveal
this effect of the "tesseral' gravity field over an extended period of time. Long-term observa-
tions of the longitude drift of one or more 24-hour satellites should reveal the exact nature of the
tesseral-gravity field to at least the third order without essential difficulty. The great height of
the 24-hour satellite tends to cancel out the individual contributions to the longitudinal drift of
anomalies higher than about the fourth order. It is fortunate that the initial slow westward drift
of the ground track of Syncom IT (August 1963 to March 1964) appears to have occurred relatively
close to a point midway between the triaxial earth's major and minor equatorial axes where the
perturbation of the second tesseral-gravity anomaly, for which the reduction was made, is great-
est. A weighted average of the longitude-perturbation fields of Kozai (1962), Zhongolovitch (1957),
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Kaula (September 1963), and Izsak (July 1963), at the altitude and longitude of Syncom II during
this period, shows that the second tesseral should be contributing about 80 to 85 percent of the
perturbing force. If further observations of this and other 24-hour satellites confirm this esti-
mate, then the magnitude of the dominant J,, potential term, separated from higher order effects,
will increase by 25 percent at most from the value reported here, which is based on the assump-
tion that only the triaxial earth-gravity field is being measured by the drift observations. The
reported location of the major equatorial axis of the triaxial earth ellipsoid is not expected to
change significantly with this later refinement.

In summary, long-term observations on the drift of Syncom I have already established to a
high degree of certainty that:

1. The earth must be considered to be a ""triaxial ellipsoid' (for example, having a sea-level
surface of this form) for the purposes of 24-hour satellite design. (For broader geodetic
purposes; a significant longitude dependent gravity field exists, defining:
2.2X 107 < [J,,| < 1.6x107%; -25° < x,, < -13°)

2. The difference between the major and minor equatorial radii of that ellipsoid is not less
than 200 feet nor greater than 225 feet.

3. The location of the major equatorial axis of the "triaxial geoid" is between 13 degrees and
25 degrees west of Greenwich.

It may be added that the study of simulated 24-hour satellite drift in a triaxial earth field, influ-
enced also by sun and moon gravity and by sun-radiation pressure perturbations, shows that the
theory of longitude drift presented in this report is substantially unaffected by all perturbations
except that due to the earth's elliptical equator and possible higher order longitude-dependent
earth-gravity anomalies.

1. BASIC THEORY OF THIS REDUCTION

(Determination of the Longitude Drift and Orbit Expansion for a 24-Hour Satellite With a
Near-Circular Orbit Affected by a Small But Persistent Tangential Pertdrbing Force.)

The dominant perturbations of a 24-hour equatorial satellite in a higher order earth-gravity
field have been derived many times in the literature (References 3, 4, 5, and 6). In these refer-
ences, the perturbations were found by directly linearizing the equations of motion themselves and
displaying the perturbed motion in appropriate geographic coordinates; no attempt was made to
treat the drift of the inclined 24-hour satellite.

In this report, I will depart from this rather involved and difficult-to-visualize procedure of
linearization-of-the-equations-of-motion. Instead, I will show how simple it is to derive the
dominant drift and orbit-expansion equations for the 24-hour satellite by dealing with what can be
called "the perturbation of the 2-body energy" of the geographically stationary satellite by the
small but persistent longitude-dependent earth-gravity force. This paper will not discuss in
detail the limits of validity of the expressions derived. Instead, to assess the accuracy with
which these expressions predict the satellite's behavior, simulated trajectories with typical




Syncom II orbit elements have been run on Goddard's particle program "ITEM'. These ira-
jectories (Appendix A) confirm the validity of the derived drift equations to an accuracy well
within the ""noise levels" in the orbital elements reported for Syncom II. The equations are es-
sentially the same as those which P. Musen has derived by a more general but more complex
"energy perturbation method (Reference 7).

In Figure 1, F is a small earth-gravity perturbation force acting tangentially to an initial cir-
cular 24-hour satellite orbit; ds is a small arc length of the satellite's path around the earth.
At the beginning of the dynamics, the total
energy (the sum of potential and kinetic) of the
satellite in a spherical earth-gravity field (Re-
ference 8) is

SSION OF 24-HOUR
e SATELLITE IN ITS ORBIT
E
E = - 5 1 4 - HOUR SATELLITE
s (1) dss/ir § FROM TS _
EARTH'S
ROTATION
3 N . RATE AND
where », is the earth's gaussian gravity con- DIRECTION
F
stant (3.986 x 10° km 3/sec ?). The energy added
to the satellite by F per day is
AE = §Fds = 2maF, (2)
where F = (1/277)§ Fdé . F, in units of force
per unit mass, is the orbit averaged energy
perturbing force. If the orbit is purely circu- Figure 1—Orbit plane of a 24-hour satelljte,

lar, only a tangential perturbation force can looking southerly.

cause a change in the total energy. The ITEM

simulated trajectories in Appendix A and the real Syncom II orbits both maintain eccentricities
of the order of 0.0001 for periods up to 100 days. Equation (2) assumes the eccentricity is zero
for the 24-hour satellite of semimajor axis a_.

From (1), the change in energy of a 24-hour satellite is accompanied by a change in semi-
major axis expressed by

AE = HEas , or
2(a, )’
Z(as)zAE
ba, = S —. (3)



Substituting (2) into (3), the change in semimajor axis of the 24-hour near-circular orbit, per day,
is approximately given by

47 (a s)3 F
Aas N #E ) (4)
From Kepler's third law, the period of a 24-hour orbit as a function of its semimajor axis is

2 (a 3/2

T, = W : (5)

Thus, if the semimajor axis changes by 2a_, the period change is given by

3 (as)l/2 ba_
AT, = (#E)l/z ’ (6)

Substituting (4) into (6), the change in period, per day, of a 24-hour circular orbit is given by

12772(as)7/2}—7
AT = —(TE)I—H—— (7)

The apparent net longitudinal drift rate of the 24-hour satellite's ground track with respect to the
surface of the earth after the first sidereal day is

) (a1,) 27
A (t = 1 sidereal day) = - — (radians/sidereal day) (8)

s

(See Reference 9 for example). The minus sign is taken in (8) because a gain in period is accom-
panied by a decrease in net geographic longitude for the initially 24-hour satellite (for example,
for the daily geographic position of the ascending node). Combining Equations (7) and (5) in (8)
gives

x (t = 1sid. day) = —Ml—;(:—;—%(rad./sid. day) . 9)

As the gain in semimajor axis is small over one day (and, in fact, small compared to a_, for
the entire libration period of the satellite in the triaxial earth field), the drift rate will continue
to build up linearly with time initially, adding increments of (9) each day. Thus, the net longitudi-
nal drift acceleration of an initially 24-hour satellite is

.- 2y
o= -2 F (rad./sid. day?) . (10)

/“‘LE/(as)




Rewriting (4) as

4r(a.)’

a = % (length units/sid. day) (11)

gives the expansion rate of the initially 24-hour near-circular satellite orbit due to a small but
persistently acting orbit-averaged tangential perturbing force F.

2. EVALUATION OF THE PERTURBING FORCE

Figure 2 shows the position of the 24-hour satellite with respect to the earth and the celestial
sphere. F_, F, andF, , earth-gravity perturbing forces in the radial, latitude, and longitude di-
rections, are assumed to be acting on the satellite at s. Considering only the earth-gravity per-
turbation forces arising from the ellipticity of the earth's equator (Reference 10), Appendix B
gives these forces as

E(R a, 2
F,o = i_(:'/—)2—)—{9122 cos?¢ cos 2 (A'Aﬂ)} ' (12)

NORTH

PROJECTION OF ORBIT PLANE
OF SYNCOM I ON CELESTIAL

GREENWICH MERIDAN SPHERE

AT TIME ¢

GREENWICH MERIDIAN
AT TIME ZERO

F=F(e)tF )

V¥
(VERNAL
EQUINOX) REAT CIRCLE OF

ACTION OF Fy

ELESTIAL EQUATOR

DIRECTION OF EARTH EQUATOR'S
MAJOR AXIS

Figure 2—Position of a 24-hour satellite with a near-circular orbit with respect
to the earth and the celestial sphere.



/*l;(Ro/as)2 :

Fy = T{GJN cospsin¢ cos 2 ()‘ _>\22)} ' (124)
M R /as 2

P - 1(0_2L{6122 cos # xin 2(r ~A,)} - (13)

(=)

As long as the orbit is nearly circular, F_ will have negligible contribution to F. The contribution
to F from F, is:
F(¢>) = F¢,Cosa = Ksin¢cos ¢ cos acos 2()\—)\22) (14)

K is a constant for a single orbit.

K = 6J,\7—3 /)
(as) (14A)

In the right spherical triangle AN, s, L, note the following trigonometric relations:

cos (i) - Tk (154)
coss = L (158)
sing = sin(i)siné , (15C)
sina = 2l (15D)
From (15A),
AL = tan"! [tan 6 cos (i)] . (16)

Let the geographic longitude of the satellite at the ascending node (AN) be A,. Counting time
from this orbital position, the geographic longitude of the 24-hour satellite at s in its near-
circular orbit is

A= Nt AL - @, \Figure 2)
or, using (16),

A= Nt tan™! [tanﬁcos(i)] - W - (17)




w, is the earth's sidereal rotation rate. For the 24-hour satellite (starting the dynamics with
S. at A.N., for convenience), ¢ * w_t, so that (17) becomes

AE oAt tan_‘[tanﬁcos(i)] -6, (18)

approximately. The function tan™' [tan 6 cos (i)] -¢ is even abouté = Oand ¢ = 7/2, witha
period of =, and behaves like a somewhat distorted sine function (Figure 3 and Appendix C). Call
this function A and note that for i < 33 degrees, Ax is always less than 5°. Thus, using (18) and
assuming i is sufficiently small (i < 45° proves to be a sufficient restriction on the inclination),
cos 2 (A -A,,) for the 24-hour satellite can be approximated by

cos 2(A-Ap) F cos 2{Ag-Ay) - 2Asin2(Ag-Ay,) = - cos2y, + 2Msin2y, - (18A)

Similarly, sin2(A-),,) can be approximated by

sin2(}\0—}x22) + 2A)‘COS2()‘0—>‘22) = - sin2y, - 2Dhcos 2y, * sin2()\—)\22) (18B)

In Figure 3, 7, is the geographic longitude of the node of the 24-hour nearly circular satellite
orbit with respect to the minor equatorial axis. With these expansions [(18A) and (18B)], and using
(15B), (14) becomes

singcos ¢ tan ¢

Fg = K——g— {-cos 2y, + 2\ sin 2y, } -

@

Using (15C) in the above expression, the con-
tribution to the perturbing force F due to F,
becomes

sin? (i) sin 26
F(qs) = K —_T_— {_ cos 2>/0 NORTH

+2Msin2yg } 0 (19) friue
# BaAx )i
Writing A\ = A\ (max) sin 26 , (19) becomes ” IETANTANEDUS
4 ELLITE POSITION
mmuﬂ-monmw m&r — TRACK AWAY ;.Fm m”’o‘
. mlm‘:y m% NODE FOR A 24 -HOUR SATELLITE
. 2, [ sin 20 ¢ f o™
F(¢) = Ksin® (1) [ cos 2’,\'0] -3 Sneznce . o EasT
A
- Ksin? (i) &\ (max) [sin 2y, sin? 29] (20) j
Averaging F , over 0 < 6 < 2w, (20) gives
1 (7 in? 1A (max
Foo= _ _ SinTibA (max) ; : .
Fg = -EJ' Fydd = - 5 [K5m270] (21) Figure 3—Ge.ogroph|c subsatellite track of 24-hour
o satellite in a near—circular orbit.




The contribution to F from F, is
F(» 8 F,cos(90-a) = F,sina = Ksinacos¢ {- sin 2y, - 2A\ cos 2y0} ) (22)

from (13) and (18B). Using (15D) in (22), and noting that A\ = &\ (max) sin 29, as before, gives the
contribution to F from F, as

F,, = Kcos(i) {- sin 2y, - 20 (max) sin 20 cos 2y, } - (23)

Averaging F ,, over 0<06 <27, (23) gives
I_"()\) = - Kcos (i)sin 2y, . (24)

Thus, combining the contributions of the latitude and longitude perturbations to the average
perturbation force over a single 24-hour orbit, (21) and (24) sum to produce

in? (i) 5\ (max)
S 12 max 3 (25)

F (total) = F t Fyy = - Ksin 2y0{cos(i)+

3. COMPLETION OF THE DERIVATION OF THE DRIFT EQUATIONS

Appendix C shows that
AN (max) = tan”! [sec (1)] - 45° .

It is also shown there that, to a high degree of accuracy for i < 50°

. sin? M (max) ., 1 + cos? (i)
cos (1) + 3 = 3 .

Numerically integrated orbits have shown that the drift theory for a 24-hour satellite stemming
from (25) is in error by more than 2 percent for i > 45°. With this restriction on orbit inclina-
tion, using the above approximation for the inclination factor, we can rewrite the longitude drift
and orbit expansion equations (10) and (11), evaluating F by (25), giving

. 1272 2
o /(ﬂas;g [°°S (2 ”]sm 2y, , (rad./sid. day?) (26)
47 (a_)®K 2 ¢
. s 1
i - (#E) [°°S O ]sinzyo, (length units/sid. day) . @7)




Substituting (14A) into {26) and (27) reduces these expressions to

2 ,.
7 om 1271, (Ry/a,)? [C—"S——(#] sin2y, , (rad./sid. day?) (28)
2 ,.
a = - 247],,(Ry/a,)R, [COS ; : l] sin 2y, (length units/sid. day). (29)

Define a nondimensional change of semimajor axis from a_ during the drift as

a - a M
a, - a = = 23 ; SO that, éx :-;—' (29A)
With (29A), (29) becomes
. Ty +1
a, = - 2], (Ro/asy{c—"s—g‘)*—} sin2y, , (1/sid. day). (30)
Define:
2 .
Ay = - 71271, (Ro/as)z{“’s*(z—‘);l} , (rad./sid. day?). (30A)
With (30A), (28) and (30) become;
¥ + A, sin2y, = 0 , (rad./sid. day?) (31)
. A,, sin 2y,
a, -——3.—— = 0 ,(1/sid. day). (32)

Note that ~ in (32) has dimensions of rad./sid. day. It must be understood that (31) describes
the net daily geographic acceleration of the initially 24-hour satellite with respect to the earth's
minor equatorial axis. Stated another way, (31) describes the geographic drift of the entire
originally stationary, figure-8 ground track (Figure 3). Similarly, (32) describes the net daily
orbit-expansion rate of the 24-hour satellite. In particular, it is convenient to treat the motion of
the ascending node of the orbit in geographic longitude as a reference for the entire configuration.
In what follows, therefore, y will refer always to the geographic longitude of the ascending node
east of the equatorial minor axis; v, will refer to the initial geographic longitude of the A.N. east
of the minor axis, at the start of the dynamics under consideration. (31) and (32) can thus be re-
written in terms of the general nodal longitude position y, to give the relevant partially uncoupled
long-term drift and orbit-expansion differential equations for the near-24-hour near-circular
orbit satellite:

¥ + Ay sin2y = 0 , (rad./sid. day?) (33)




a, ~—5—— = 0 ,(1/sid. day). (34)

4. GENERAL CONSIDERATIONS OF THE SOLUTIONS OF THE DRIFT EQUATIONS

Equation (33) can be integrated directly for the geographic drift rate by noting that

A () LA 1)

Yoo odat o 2y dt T 2dy”
Thus (33) can be separated to
d(3)* = - 2a,,sin2ydy . (35)

Since the variables (7)* and » are separated in (35), (35) integrates to

(7/)2 = A,ycos 2y + C, . (36)

With the initial condition that ¥ = ¥, at ¥ = »,, (36) becomes

¥ = [(7'/0)2 +A,, (cos 2y - cos 2y, )] vz , (37)

giving the drift rate of the 24-hour satellite as a function of the initial drift rate 7, the earth-
gravity constant A,,, the initial longitude east of the minor axis y,, and the instantaneous longi-
tude y. Returning to the semicoupled system of equations (33) and (34), the explicit dependence of
the equations on the location from the minor axis and the magnitude of the equatorial ellipticity
may be eliminated by multiplying (33) by 1/3~ and adding the resulting equation to (34), giving

¥+ 3ma, = 0, (38)
(38) can be rewritten as
als
Jd%) +3ma; = 0 = d(y) +3ma,dt = d(¥) + 3nd(a,) . (39)

Separation of the variables ¥ and a, is thus achieved in (39). (39) integrates directly to

3ra; +y = c, . (40)

With the initial conditions: a, = 0, when 3 = 0 (the satellite is in the momentarily stationary
ground-track configuration); C, = 0. If y, in (37) is also the longitude of this initially stationary
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orbit, (%,)? = O there, and (37) in (40) yields for a,, the semimajor axis change from "synchron-
ism' inthe drift motion,

Y2 (cos 2y —cos 2y 12
. - , R ( i 0 a1

(41) shows explicitly that the semimajor axis is bounded in long-term drift from a stationary
orbit. From (33), since A,, > 0, if 0 < y, < 90°, drift proceeds fowards the nearest longitude of
the earth's equatorial minor axis (in a - y direction). If -90°<y, < 0° (33) shows that drift again
proceeds foward the nearest minor axis longitude (in a +y direction). Thus, in all cases of drift
from a stationary geographic configuration, cos 2y - cos 2y, is a positive function which has a max-
imum when ¥ = 0 (when the satellite has drifted over the longitude of the minor axis). Thus (41)
gives (for the librations of a 24-hour satellite)

a; (max) = 1 z 3 l : (42)

Again it is noted that = in (42) has units of rad/sid. day. An absolute maximum semimajor axis
change in the drift occurs when the ""synchronous'' condition is established near the longitude of
the major equatorial axis. Here, v, = -90° cos 2y, = -1, and

2A 1/2
a, (absolute maximum for a librating 24-hour satellite) = (-—%2— (43)

For the constant J,, = - 1.7 X 107¢ (derived in this study from long-term observations on the
drift of the Syncom II satellite) and using the additional constants from this study:i = 33°,
a_ * 42166 km, R, = 6368.388 km; (30A) gives

A,, = 23.2x10°¢ (rad./sid. day?).

22
(43) then gives
a, (absolute max.) = .72 x 107 %, from which, by (29A),

Aa (absolute max. from a "synchronous’ condition near
the equatorial major axis, for a satellite of i = 33°) = 30.7 km .

Thus the assumption made in (10) and (11), to approximate the slightly varying semimajor axis by
a_ (a constant) throughout the drift motion, appears amply justified.

Figure 4 is a graph of (41) for a, vs. 7 (the longitude with respect to the nearest minor axis
location) as a function of y,, the longitude in the initially stationary configuration.
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0, (MAX.) FOR y,
~'SYNCHRONOUS'
LONGITUDE

Q- 90° > CIRCULATION PATH FOR
ENERGY CONSTANT
Ci* -Az2 COS 2y,

MAJOR
EQUATORIAL MAJOR EQUATORIAL
AXIS AXIS
. X

CIRCULATION PATH
WITH MAX. ENERGY

MINOR ~(Ci=Apz) FOR A
EQUATORIAL LIBRATING 24
AXIS e 90°* » HOUR SATELLITE

Figure 4—Libration with longitude of the semimajor axis of a 24-hour satellite as a
function of the longitude of the initially stationary configuration.

Note that (41) allows equal + values for a, for each,. Suppose the satellite is initially at +y,
(positionl in Figure4)from the nearest location of the minor axis: From (33), sin 2y, being posi-
tive, the satellite begins to drift west (attaining a negative drift rate) towards the minor axis. But,
from (40), since C, = 0, a, = - (¥)/37>0; the drift therefore proceeds counterclockwise in Fig-
ure 4, around the central point of the minor axis and a, = 0, along the upper portion of the two-
valued arc determined from (41).

The same situation holds for the motion beginning or stemming away from the "synchronous"
longitude at -y, , position 2 in Figure 4. Here sin 2y, is negative, and the drift proceeds at a posi-
tive rate to the east. Again from (40), as soon as the satellite leaves position 2, a, = - (3)/3n <0,
and the circulation continues in a counterclockwise direction. Every trajectory in the phase plane
a,<>y may be conveniently defined by the constant C, of the "energy integral" of the drift motion
(36). Since (33) is the equation-of- motion defining the large-angle oscillations of a mathematical
pendulum (in the case of the 24-hour-orbit satellite, the point of symmetry is the minor axis where
2y = 0), it can be expected that the general solutions in that theory apply to the long-term libra-
tions of the ""synchronous satellite" (Appendix D). For example, in (36), with a momentarily
"synchronous'' condition at ¥, being given by 7, = 0, the "energy constant" is evaluated as

C, = - A,,cos2y, .
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With this evaluation, (36) becomes
? - Ay cos2y B - A, cos2y, . (44)

Solving for the initially "'synchronous" longitude as a function of any longitude in the drift and the
corresponding longitude rate, (44) gives

Yo ° %cos‘l l:cos 2y - %}] . 45)
Since (7)2/A,, > 0, the argument of cos”! in (45) is always less than or equal to 1. Thus, as long
as cos 2y - (7)2/A,, > -1, (45) will give a real solution for the momentarily "synchronous' longitude
with respect to the minor axis. But, if cos 2y - ('y)yA22 < -1, there will be no real momentarily
"synchronous" configuration for the near-24-hour satellite. With this energy, the world-
circulation regime commences, corresponding to the over-the-top, high-energy regime of the
mathematical pendulum (Reference 3). The above inequality implies that, for the commencement
of "world circulation" for the near-24-hour satellite,

(7)? 2 A,, (1+cos 2y),or
()2 2 2A,, cos?y . (46)

When 2y = 0, or the satellite is over the minor axis, (46) allows the maximum possible drift rate
for a librating 24-hour satellite:

’y(max)for libration - (2A22)V2 ’ (rad'/Sid' daY) * (47)

For example, using the reported value of A,, = 23.2 X 107° rad./sid. day® for the inclination of
the Syncom II satellite, (47) gives

. .0 = (46.4Xx10°°)¥2 = .39 degrees/day. (48)

y(max _6
4 )for libration with J,, = 1.7 X 10 7, i — 33

5. APPROXIMATIONS TO THE EXACT DRIFT SOLUTIONS FOR PERIODS VERY CLOSE TO
SYNCHRONOUS

Expanding the drift from the "synchronous'" longitude (y = 7, in this section) in a Taylor
series, with respect to increments of time 4t from the momentarily stationary condition,

MY L. (A3 (O)*
G5, G+l

HEEY =y + T+ T

(A)S (6] (&6)°

At)’ At)8
s G v S e ol At -

-+ (50)
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Differentiating (33) six times with respect to time, it is clear that all derivatives in (50) can be
written as functions of A,,, v, and 7,. Noting that y(At) -y, = & (the geographic longitude with
respect to the ""synchronous' configuration) and 7, = 0, (50) can be shown to reduce to the
expansion

2 At )4 6
M = (—A“ sin 2'y0) (A;) + [(An)2 sin 470] (ﬂztz)—— + [(A22)3 sin 2y, (4 sin? 2y4 - 1):' S%%())—
8
- [(AM)4 sin4y, (34sin? 2y, - 1)] gﬁ(t)go + ... (B1)

It is apparent that, as At ~ 0, the higher order terms of (51) become increasingly more insignifi-
cant to the total drift, in comparison to the terms of lower order.

In Appendix D, the exact "elliptic integral’' of motion from (33) is calculated from a syn-
chronous longitude of 60° east of the minor axis. This calculation demonstrates that the simple
term-inclusion-time criterion below gives an adequately converging series to the "exact' drift.
In the actual reduction, all higher order terms in (51) which are less in magnitude than the root
mean square (rms) error of the observed Syncom II longitudes, are ignored. Section 7 of this re-
port shows that this rms error of longitude determination for the ascending equator crossings of
Syncom II from August 1963 to March 1964 has been of the order of +.025 degrees. Thus, 0.025°
is used below in forming the minimum-time-term-inclusion criterion for each term of (51).

A,, is assumed to be 23.2 X 107¢ rad./sid. day?.

A) For inclusion of the (At)* term:

‘sin 4y0| is maximum when », = x22.5° and £67.5°.

Therefore,

A 4
|&A, ., (from the fourth-order term)l = (Ay,) £_2tq)_ . (524A)

Solving (52A) for At, when [\ (4th order)| = .025°,

max

1/4
bt (min. fourth-order term inclusion) = (.025 x 24/57.3 x [23.2 x 10° oI*)

66.5 sid. days from "synchronism’ .

B) For inclusion of the (At)S term:
lsin 2y, (4 sin? 2y, - 1) I is maximum when v, = +45°.
Therefore,

A 6
|M,., (from the sixth-order term)| = (A,,)’ (—6%)— . (52B)

14




Solving (52B) for At, when |An _  (sixth order)] = .025°,

(025 x 60/57.3 x [23.2 x 107"

At (min. for sixth-order term inclusion)

113. sid. days from ''synchronism" .
C) For inclusion of the (At)® term:
|sin*y, (34sin?2y,~1) | is maximum wheny, = 5914°,
Therefore,

8
|ar,,, (from the eighth-order term)| = 21.2 (a,))* {5535 (52C)

max

Solving (52C) for At, when | (eighth order)| = .025°

a x

4 1/8

(10080 % .025/21.2 X 57.3 x [23.2 x 1079 )

At (min. for eighth-order term inclusion)

171. sid. days from "'synchronism .
Similarly, expanding a, (t) in a Taylor series about the time of "synchronism", (t, , v,):

(br)?

_ . . (At)3
N I A A N R A R A R (53)
But, from (34),
. A,, sin 2y,
(31)0 = 37 : (53A)
Differentiating (53A) with respect to time,
. B 24 Ay, cos 2y,
(8 = 37 =0, (53B)
since y, = 0. Differentiating (53B) with respect to time,
- 4(&0)2 A,, sin 2y, 2&'0 A,, cos 2y, - (A22)2 sin 4y,
(al)o - 37 * 3n = 37 ’ (54)

using equation (33). From the conventional definition of a,, (al)o = 0. (53) then becomes

A sin2’y)At A\ sin 4y, (Ot)3
a, (at At from "synchronism'") = (A 37 : - ) 18770 toeer (54A)

with the results of (53A), (53B), and (54) in (53).
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Section 7 shows that the rms error of semimajor axis determination for Syncom II (including
sun and moon "noise") is of the order of +0.5 km. Therefore, the rms error to be expected in a,
is of the order of .5/42166. = 1.185 X 107 5. Following the procedure for the longitude drift,
1.185 x 10”5 is used below to determine the minimum time for the inclusion of the terms beyond
the first on the righthand side of (54A), to ensure adequate convergence of the infinite series for
a, (At).

A) For inclusion of the (At)® term:
|sin4y,| is maximum when y, = +22.5°and +67.5°.
Therefore,

(Ap) % (At)?
22 = . (55)

[trom the third-order term of (54A)]| =

a 1(max)

Solving (55) for At, when |a, (max)| = 1.185x 1075,

At [min. for the third-order term inclusion in (54A)]

1.185 x 1075 x 187 |#
23.2 x 10712

108 sid. days from
synchronism .

From a ""synchronous' configuration at 54.8° west of Greenwich, on or about 6 September 1963,
Syncom II drifted to 59.2° west of Greenwich on 28 November 1963, where it was "'stopped" by the
tangential firing of on-board cold-gas jets. A second free-drift period followed from a "synchron-
ous" configuration at 59.2° west on about 29 November 1963, to 66.3° west on 18 March 1964,
where the on-board tangential jets were fired to speed up the westward drift. Of the 34 separate
orbits calculated by the Goddard Data and Tracking Systems Directorate for these free-drift
periods, only 7 fell outside the minimum 66-day period around a condition of '"'synchronism', for
which the inclusion of higher order terms in (54A) would be necessary in reducing the drift data
according to that theory. The data reduction of Section 7 includes only those orbits falling within
the minimum 66-day period around ""synchronism'". Further refinement of this reduction to in-
clude the 7 outside-of-synchronous orbits (according to the criterion of this chapter), will be made
in the near future. This refinement is not expected to materially affect the results of this report.

6. DETERMINATION OF EARTH-EQUATORIAL ELLIPTICITY FROM TWO OBSERVATIONS
OF DRIFT ACCELERATION AT A GIVEN LONGITUDE SEPARATION
Given two independent near-synchronous drifts (in the sense discussed previously), whose
momentarily synchronous longitudes (yo)1 and (70)2 are separated by va. Let the two drift

accelerations at these two 'synchronous™ configurations be (v, and (yo)z . The drift ac-
celerations may be determined from drift-data reduction according to the theory of (51).
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From (33),
Go)r = - (A22)1 sin 2(70)1 (56)

(2 =~ (Ay),sin 2[(70)1 +V>\] ' (57)

since (7,), = (Yo)1 = 2 = (Xo)2~ {Xo);- Expanding (57) and dividing by (56) gives

[((10))1 {%zz—gﬂ = cos 2VA + sin 2VA cot 2(70)1 ’ (58)

Solving (58) for (y,); ,

1 - sin (VA) .
(70)1 3 tan (7';0)2 (Azz)l 2(V\) e
— - Cco
(70) 1 (Azz)z )

The quadrant of (70)1 is either the first or the fourth, because drift acceleration is always in
the direction of the nearest longitude extension of the earth's minor equatorial axis. Once the
minor axis is located by (59), the absolute value of J,, in the earth's triaxial gravity field can be
determined through (56) and (30A), for example, as

(A22) 1 (5;0)1

J - . = A [y K |
* 72772[R0/(as)1]2 [i(;)l_f_l] 7272 sin 2(7‘0)1 [Ro/(as)l]zr Lcosz (12)1 + 1] (60)

Note that the units of (7,), in (60) must be those of radians/sidereal day? so that J,, will be di-
mensionless. Note also that in (59), using the result of (30A),

(A22)1 B (as)2 2 Cosz(i)l+1
(A2)2 | (@)1] [cos? (i), +1 (61)
Using (59), since (1), is known from the data reduction (the geographic longitude of the "syn-

chronous" configuration), the geographic longitude of the nearest minor axis location can be
calculated as

¥2 = (M1 (Vo)1 - (61A)

Similarly, the geographic longitude of the nearest major equatorial axis location can be calculated
from

Nag = (Ro)i = (ro)y +90° . (61B)
(See figure 3).
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Following the theory of Reference 10, the difference in major and minor equatorial radii of
the earth's triaxial geoid (a0 - bo), is related to the gravity constant J,, by

ag ~ by T ~6R;J, . (62)

7. REDUCTION OF 27 SYNCOM H ORBITS TO DETERMINE THE EARTH'S EQUATORIAL
ELLIPTICITY

Appendix A tabulates the 27 Syncom II orbits from which the reduction below was made.
Table 1 gives the estimated ascending equator crossings nearest to the epoch of these orbits.
These were calculated by hand, and therefore are listed only to 0.01 degrees and 0.01 days. The
technique used was to locate from the Nautical Almanac, the geographiclongitude of the ascending
node at epoch through the reported right ascension of the ascending node for the orbit, and the
hour-angle of the vernal equinox calculated at epoch. The geographic longitude of the ascending
equator crossing was then estimated by turning the earth back through the orbit angle from the
ascending node to the satellite at epoch. This latter quantity was estimated as «» - M for the near-
circular orbit of Syncom II. A correction factor to this orbit angle — the ratio of the satellite's
period to the earth's sidereal period — was applied for orbits whose period was sufficiently dif-
ferent from the earth's. The nodal longitude at epoch, minus this reduced nodal excursion angle,
is the estimated "ascending equator crossing nearest to epoch' reported in Table 1. (See Appendix
E for an example of this calculation.)

Table 2 gives the Goddard-reported semimajor axes for these 27 orbits. Truncating equa-
tions (51) and (54A) at their first righthand terms:

(bt)?

M (longitude drift from "synchronism") = - (A,, sin2y,) ~—— (63)
sin 2y, (At)
a, (semimajor axis change from "synchronism") = A,, — 3 — - (64)

Let the drift time be given from a certain arbitrary base time by T. Let T, be the time of
"synchronism' from the base time. Let the drift be given from a certain arbitrary geographic
longitude by A. Let A, be the geographic longitude from this base longitude, of the ""synchronous"
configuration. Then:

At = T-T, , and

A= A - A

A sin 2y
A E Ay - (_22‘)(2—)‘“(T2—2T1‘0 T2 , or

T (Ay, sin 2x A,, sin 2y
A :{&0—-——7——1 + T{T,A,, sin2y, ¢+ T? —L2—°- (65)
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Table 1

Estimated Ascending Equator Crossings Nearest the Epoch of 27 Syncom I Orbits.

. . Time from Ascending Equator . Time from Ascending Equator
Flé:{).]g?ﬁ 20.0 Aug. 1963 | Crossing in Degrees Sec(;) ng tD#f ift 26.0 Nov. 1963 | Crossing in Degrees
t (days) West of 50.0° West ot (days) West of 50.0° West

1-1 2.12 4.89 2-1 1.86 9.17
1-2 7.11 4.83 2-2 7.84 9.17
1-3 11.09 4.78 2-3 13.83 9.22
1-4 16.08 4.74 2-4 20.81 9.38
1-5 20.07 4.77 2-5 41.75 10.15
1-6 23.06 4.78 2-6 44.74 10.36
1-7 28.05 4.85 2-7 55.71 11.02
1-8 31.04 4.90 2-8 64.69 11.76
1-9 38.02 5.06 2-9 71.67 12.32
1-10 42.01 5.09 2-10 76.66 12.81
1-11 48.99 5.45 2-11 83.64 13.49
1-12 54.97 5.68

1-13 62.95 6.09

1-14 70.93 6.60

1-15 77.91 7.14

1-16 83.90 7.61

~100.0 First free drift

period ends at an

ascending eguator
crossing of ¥9.15°
west of 50.0° west.

Table 2

Goddard-Reported Semimajor Axes for 27 Syncom II Orbits.

First Drift 2 0’1‘(1)11:‘31 frolxélﬁs Semimajor Axis: Second Drift 26T(1)n111(i)£r011;163 Semimajor Axis:
Orbit # . g- (42160.0 + Data; km) Orbit # : N (42160.0 + Data; km)
(days) (days)

1-1 2.27 4.58 2-1 2.04 5.89
1-2 6.71 4.52 2-2 8.00 7.20
1-3 11.00 6.02 2-3 14.00 7.18
1-4 16.00 6.39 2-4 20.71 8.17
1-5 20.00 6.35 2-5 41.71 8.01
1-6 23.08 6.55 2-6 44,25 9.20
1-7 28.08 6.70 2-7 55.88 11..3
1-8 31.08 7.42 2-8 64.83 11.91
1-9 38.08 7.51 2-9 71.67 12.89
1-10 42.08 8.88 2-10 76.79 13.31
1-11 49.08 9.14 2-11 83.71 14.89
1-12 55.08 9.78

1-13 63.08 11.51

1-14 71.00 11.09

1-15 78.00 12.15

1-16 84.21 12,51

~100.0 First free drift

period ends with a
semimajor axis of
~42174.5 km.

19




(Note that from (65), % = - A,, sin 2y, = ¥, from (33). This result is valid only for orbits sufficiently
close to "synchronous,” as discussed previously.)

A,, sin2y,
a = as+as"-—7n‘—[l‘—To] , Or

[N
1l

T, A,, sin 2y a_A,, sin 2y
a, (1- : 22377“—‘0> +T<¢3w' °> : (66)

(66) and (65) may be written with determinable coefficients as

A = dy +d,T+d,T?, (67)
4
a - e0+e1T, (68)
where:
~ T? A,, sin 2y,
dy = Ay ™ 2
d, = (+ A22Tosin2y0)
A, sin 2y
22 0
d2 = _——'——‘2 1 (69)
T, A,,sin2y,
e, =~ a 1-——>5,— |
sin 2y,
e; T a Ay 37
From (69),
T, = -d/2d,, (70)
I
Ao T do T Tad; (71)
Yo = T Aysin2yy = 2d, . (72)

Alternately, and as an internal check on the theory of the coupling of the drift and orbit expansion,

&'O = - A, sin 2y,

. implying

: = e[, . (13)
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In equation {73), the units of d, must be radians/sidereal day?, and the units of e , must be length/
sidereal day so that the equation will be dimensionally correct. The semimajor axis at the "syn-
chronous™ configuration is calculated from (68) for T = T,:

as =] = + elTo . (74)

For the first drift period (orbits 1-1 through 1-16), the best estimates (in the "least squares"
sense) of the coefficients (d), and (e),, obtained by fitting (67) and (68) to the data in Tables 1 and
2, have been found to be:

dg), = (4.941 + .018) degrees
(d,); = -(.0216 + .0010) degrees/solar day
(d,), = (6.37 +.11)x 10"* degrees/solar day?

= (6.33 £ .11) X 10°* degrees/sid. day?

(ed); = (4.35 £.19) km
(e,), = (.0993 + .2742) km/solar day

(.0990 + .0042) km/sid. day .
The mean value of the inclination during this period was

(i); = 33.018 £ .005 degrees .

From (70),
(To), = <16.95 fi:?,g)days from 20.0 August 1963 .
From (71),
(Ae)y = (4.76 + .03) degrees west of 50.0 degrees west longitude .
From (72),

(Fo)1 = -(1.27 £ .02) X 10" degrees/solar day? = -(2.20 + .04) X 10" ® rad./sid. day? .

From (74) and the above value of (TO)1 s

(a), = (42166.0 % .2) km .
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For the second drift period (orbits 2-1 through 2-11), the best estimates (in the "least squares"
sense) of the coefficients (d), and (e),, obtained by fitting (67) and (68) to the data in Tables 1 and
2, have been found to be:

(dg), = (9-156 + .017) degrees
(d,), = -(.0030 £ .0010) degrees/solar day
(d,), = (6.59 + .11) x 10"* degrees/solar day?

= (6.55 + .11) X 10™* degrees/sid. day?

(o), = (5.70 + .42) km

(e,), = (.0994 + .0080) km/solar day

(.0990 + .0080) km/sid. day .
The mean value of the inclination during this period was

(1), = 32.851 + .010 degrees .

From (70),
(To), = 2.3 % .8 days from 26.0 November 1963 .
From (71),
(Ao)2 = 9.15 + .02 degrees west of 50.0 degrees west longitude .
From (72),
(Vo) = -(1.32x .02)x 10°® degrees/solar day? = -(2.29 + .04) X 10°° rad./sid. day® .

From (74) and the above value of (T,), ,
(a), = (42165.9 + .4) km .

(See Figure 5 for a graph of this orbit data and reduction for the two drift periods.) Combining
the above results of the two free-drift periods, from (61),

(8,) [cos? (33.018 £ .005)+ 1]
(42165.9 + .4/42166.0 + .2)?
(A5,), [cos? (32.851 + .010)+ 1]

.99845 + .00014 .
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The longitude separation between the two drift periods is given by

o= (), - (o = [-(69.15 £ .02)] - [-(54.76 + .03)] degrees
= -(4.39 + .05) degrees geographic longitude .
Thus
2Un = -(8.78 + .10) degrees geographic longitude .

Therefore, from (59), the location of the minor equatorial axis with respect to the ""synchronous”
longitude during the first free-drift period (54.76 + .03 degrees west of Greenwich) is

sin [-(8.78 + .10)]

(1-322 .92) 99845 + .00014)- cos [-(8.78 + .10)]
(1.27 = .02)

1
('Vo)l = jtan

= b4 fg degrees east of the minor equatorial axis .

From (61B), the best estimate of the location of the major equatorial axis is

Ny = =55 -<54 tg) + 90 = —(19 tg) degrees geographic longitude .

From (60), the best estimate of the triaxial gravity coefficient J,, is

-(2.20 + .04) X 1076

T22

+4° cos? (33.018 + .005) + 1
727% |sin 2{54 _g° (6378.2/42166.0 + .3)* 2

il

- <1.67 f’%) X 1076 .

The mean equatorial radius, taken as R, = 6378.2 km, is a compromise between a number of cur-
rently used values. It is stated above without error. The likely error in (a), has been increased
arbitrarily by 0.1 km. to account for the likely uncertainty in R,.

Using the above estimate of J,, from observations on Syncom II drift, the difference between
the major and minor equatorial radii of the triaxial geoid is, by (62),

+3 +10

~ by = 64 7] meters = 210 _, feet .

a9

Comparing the deviation due to earth ellipticity with other higher order earth-gravity devia-
tions (Appendix B and Reference 10), we note that the above figure implies a maximum deviation
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from the mean earth sphere, due to the ellipticity of the equator, of

10.

11.

12.

13.

14.

R, = 10513 feet .
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LIST OF SYMBOLS

Spherical harmonic constants (order n, power m) of the earth's gravity potential
A gravity force per unit mass acting on a 24-hour satellite

(except in Appendix F) The argument from the ascending node to the satellite position
for the 24-hour orbit

The instantaneous semimajor axis, and the ""momentarily synchronous' semimajor axis
of the orbit of the 24-hour earth satellite. (a_, estimated to within 2 km, is 42166 km.)
A small arc length of a space trajectory

The earth's gaussian gravity constant (3.986 X 10° km?/sec.?)

The orbital period for a satellite, and the ""momentarily synchronous' period of a 24-
hour satellite (i.e., the earth's sidereal rotation period)

Geographic longitude, geocentric radius, and geocentric latitude of the 24-hour satellites
position

a0)

a2 ()
dt 0 T2

dt?

, %: time differentials

The mean equatorial radius of the earth (6378.2 km)
The inclination of the orbit of the 24-hour satellite

The "initial'" geographic longitude of the satellite, or the ascending node of the 24-hour
satellite's orbit at the start of the dynamics under consideration

The earth's sidereal rotation rate (.7292115 x 10~* rad./sec.)
Real time
A small argument ( )

The geographic longitude (positive to the east) of the ascending node of the 24-hour satel-
lite's orbit with respect to the earth's minor equatorial axis' longitude location, at the
start of the dynamics under consideration

The geographic longitude (positive to the east) of the 24-hour satellite, or the ascending
node of the satellite's orbit with respect to the longitude of the earth's minor equatorial
axis

(a-a,)/ a_; a nondimensional semimajor axis change for the 24-hour satellite's orbit,
with respect to the "momentarily synchronous' semimajor axis
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The driving function causing drift and orbit expansion of a 24-hour satellite in a "tri-
axial" earth-gravity field; a constant for a given 24-hour orbit inclination

The argument ( ) at the start of the dynamics under consideration

The argument ( ) at a specified locationn (except in Appendix A: ( )s; the argument
for the simulated trajectory)

The geographic longitude difference between two '""momentarily synchronous' 24-hour
satellite configurations

a, thy
5— , according to

The major and minor equatorial radii of the "triaxial' earth (RO =
the definition in Reference 10

The argument of perigee in a satellite orbit: The orbit angle (from the center of the
earth) from the ascending node to perigee

The mean anomaly of the satellite in its orbit: The orbit angle (from the center of the
earth) from perigee to a point M in the orbit, where M = 2%% t being the real time
since perigee passage and T, the period of the satellite's orbit

Determinable coefficients in the drift and orbit-expansion equations (67) and (68)
The time of "synchronism' from an arbitrary base time of reckoning T

The inclination factor in the triaxial driving function A,,

The gravity potential of the earth

The radial acceleration of the earth's gravity field at the earth's surface, and at the
altitude of the '"synchronous' satellite

A test mass
The elliptic integral of the first kind with argument (or amplitude) ¢ and modulus k

The longitude location of the vernal equinox




Appendix A

REDUCTION OF SIMULATED PARTICLE TRAJECTORIES FOR
EARTH EQUATORIAL ELLIPTICITY

Tables A-1 and A-2 present data taken from a numerically integrated particle trajectory of a
triaxial earth in the presence of the sun and moon's gravity field. Only perturbed equations of
motion from a periodically rectified Keplerian reference orbit are actually integrated by the
digital computer program (called ITEM at the Goddard Space Flight Center). For the 3 months’'
real orbit time of these trajectories, the accumulated truncation and roundoff error in the
numerical integration is believed to be negligible for the purposes of this reduction. The ini-
tial position and velocity conditions for these simulated trajectories were the same as those re-
ported for the "actual" Syncom II orbits 1-2 (for the trajectory of Table A-1) and 2-3 (for the
trajectory of Table A-2). The program used the earth gaussian-gravity constant

pg = 3.9862677 x 10° km3/sec? ,
which is the gravity constant used by the GSFC Data and Tracking Systems Directorate in comput-
ing the elements of satellite orbits from radar and Minitrack observations. The best estimates
(in the "least squares" sense) of the coefficients (d)_, and (e),, obtained by fitting the drift and

orbit expansion equations (67) and (68) to the data in Table A-1, have been found to be

4.841 = .004 degrees

—
o,
o
S—
"
—
il

-(1.22 + .03) X 102 degrees/solar day

—
o
—
~——
«
—
[t}

(6.303 + .038) x 10 "* degrees/solar day?

—_
o,
~
—
@
[
[

(6.268 + .038) x 10™* degrees/sid. day?

' 5.45 + 41 km

—
]
o
e
»
-
1}

(.091 + .010) km/solar day

—
0]
-
~——
v
—
il

(.091 + .010) km/sid. day .

The mean value of the inclination during this first simulated trajectory period was

(i), = 33.005 & .003 degrees .
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Table A-1

Data from Simulated Trajectory Beginning with the Elements of Syncom II Orbit 1-2.

(J,, = -1.68x 10"%,R, = 6378.388 km, 7,,

= -108.0: Input into Trajectory Program)

Time from
26.709 Aug.1963:
(Solar Days)

Ascending Equator
Crossing:
(Degrees West of
50.0° West Geog. Long.)

Semimajor Axis
(42160.0 + Data; km)

Inclination
(32.0 + Data; Degrees)

2.390

8.374
14.358
20.341
26.324
32.308
38.292
44.276
47.268
50.260
53.253
56.245
59.237
62.229

4.816
4.783
4.792
4.861
4.954
5.101
5.291
5.537
5.678
5.821
5.975
6.144
6.326
6.522

5.27
7.09
6.01
8.12
7.13
8.98
8.31
9.67
10.38
10.03
9.42
9.74
11.09
11.94

1.089
1.072
1.056
1.043
1.025
1.019
997
991
.983
972
967
966
.960
.957

Table A-2

Data from Simulated Trajectory Beginning with the Elements of Syncom II Orbit 2-3.

(J,, = -1.68x 1078, R, = 6378.388 km, 7,, = -108.0: Input into Trajectory Program)

Time from Ascending .Equator o ) o
10.0 Dec. 1963: Crossing: Semimajor Axis Inclination
(days) (Degrees West of (42160.0 + Data; km) (32.0 + Data; Degrees)
50.0° West Geog. Long.)
0.823 9.243 6.88 .881
5.809 9.351 7.30 .881
10.796 9.495 9.41 877
15.783 9.666 8.15 .864
20.769 9.885 9.85 .864
25.756 10.134 10.60 .850
30.743 10.401 9.95 .842
35.730 10.708 11.81 .841
40.717 11.044 12.18 .825
45.704 11.412 11.58 .816
50.692 11.830 13.93 .808
55.679 12.259 13.11 .790
58.672 12.534 13.07 785
60.667 12,724 13.69 .784
From (70),
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From (71),

.008
(o). = 4.782 7

From (72),

-(1.261 + .008) x 10~* degrees/solar day®

(’5;0) sl

~(2.188 = .013) X 10™% rad./sid. day? .
From (74) and the above value of (T,) , ,

(a.)s = 42166.3 + .4 km .

007 degrees west of 50.0 degrees west longitude .

The best estimates (in the ""least squares' sense) of the coefficients (d)_, and (e)_,, obtained by

fitting the drift and orbit expansion equations (67) and (68) to the data in Table A-2, have been

found to be

9.224 + .004 degrees

—
o,
<
—
w
~
l

(1.830 + .028) X 10~ % degrees/solar day

—
[o N
-
~—
@
~N
1l

(6.501 + .042) X 10™* degrees/solar day’

—
[N
~
—
'
~
fl

(6.465 + .042) X 10°* degrees/sid. day?

7.19 + .37 km

P
i
<>
~
»
9
1]

(.111 £ .010) km/solar day

—
19
[
——
&
n

(.111 x .010) km/sid. day .

1

The mean value of the inclination during the second simulated trajectory period is
(i),, = 32.836 = .003 degrees .
From (70),

(T,) 2 = -(14.07 £ .30) days from 10.0 December 1963 .

From (71),

+.009

( Ao) 2 = 9.095 "009 degrees west of 50.0 degrees west longitude .
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From (72),

(¥o),2 = -(1.300 + .008) x 107° degrees/solar day?

"

-(2.257 + .015) x 107° rad./sid. day?.

From (74) and the above value of (T,),, ,

(a,),» = 42165.6 + .5 km .

A graph of these trajectory simulations is seen in Figure A-1.

Combining the above results for the two simulated trajectories: from (61),

(Ar2). cos? (33.005 x .003) + 1}

), = [(42165.6 + .5/42166.3 x .4)] Lsz (32.836 < .003) + 1

= .99840 e .00007

<
>
il
—
>
o
S
w
N
1
—
>
o
<
P
—-
1l

[-(59.095 + .009)] - [-(54.782 + .008)] ,

N
<
>
]

-(8.626 + .034) degrees geographic longitude .

Therefore, from (59), the location of the minor equatorial axis with respect to the "synchronous
longitude' during the first simulated trajectory (54.782 + .008 degrees west of Greenwich) is

sin |-(8.626 + .034)]

(1.300 + -008) ( 99840 + .00007) - cos [-(8.626 = .034)]
(1.261 + .008)

1
(70) sl - —2— tan

= 52.5 + 2.5 degrees east of the minor equatorial axis .

From (61A), the best estimate of the geographic location of the nearest extension of the equatorial
minor axis from the simulated trajectory data is

(722) = -54.8 - (52.5 £ 2.5) = -(107.3 £ 2.5) degrees geographic longitude .

This compares well with the input value of (v,,), = -108.0° used to compute the simulated trajec-
tories. From (60), the best estimate of the triaxial gravity coefficient J,, from the simulated
data (according to the theory of this report) is

-(2.188 @ .013) X 10°°

(J 22)5

cos? (33.005 + .003) + 1]
7272 [sin 2(52.5 + 2.5)] (6378.388/42166.3 + .4)° [ 2 J

~(1.64 9 .03) X 10°° .
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The mean equatorial radius used in the simulation is R ' = 6378.388 km, the same used to compute
the "actual” Syncom II orbits from the radar and Minitrack observations.

The above value of (J,,), compares reasonably well with the input value of (j,,), = -(1.68)
X 107% used to compute the simulated trajectories.

The model error implicit in the difference between the reduced and inputed geodetic coeffi-
cients for the simulated trajectories warrants an adjustment of the J,, and r,, reported in Sec-
tion 7 from the reduction of the "actual' Syncom II orbits. The values below appear sufficienf to
cover all the known uncertainties of this reduction for a triaxial earth:

J,, (actual-adjusted) = ~-(1.70 £ .05) X 107°

A,z (actual-adjusted)

-(19 + 6) degrees geographic longitude .

As Appendix B will show, the principal unkrown uncertainty of the reduction is the possible in-
fluence of higher order earth tesseral anomalies on the drift of Syncom II. When all relevant
higher order anomalies in the earth's gravity potential are evaluated, the adjusted values above
will probably remain representative for an "average' triaxial potential field sufficient to consider
for the future design of synchronous satellites. As a guess, the author would increase the upper
limit of J,, to about -(1.80) x 10" ® (based on some of the recent gravity potentials in Appendix B)
for design purposes, based on an "average" triaxial geoid. A lower limitof j,, = 1.60Xx 107°¢

for this purpose appears justifiable. The variance in the location of the major equatorial axis for
the "average' triaxial geoid is not likely to change appreciably from the value quoted for the
adjusted figure. The author is presently studying these higher order earth-gravity effects. The
accumulated influence on synchronous satellites of all higher order earth anomalies, is believed
to be small compared to the 2nd order anomaly. But it appears that close and continuing observa-
tions on the drift of these satellites will be rewarded in time by revelation of many of these
"tesseral' anomalies to about 4th order with an absolute precision almost as good as that reported
here for the 2nd order effect.
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Appendix B

THE EARTH GRAVITY POTENTIAL AND FORCE FIELD USED IN THIS REPORT:
COMPARISON WITH PREVIOUS INVESTIGATIONS

The gravity potential used as the basis for the data reduction in this study is the exterior
potential of the earth derived in reference 10 for geoceniric spherical coordinates referenced to
the earth's spin axis and its center of mass. The infinite series of spherical harmonics is
truncated after J,,. The nontesseral harmonic constants J,,, J,, and J,, are derived from ref-
erence 13.

The earth radius R, used in this study is:
R, = 6378.388 km .
The earth's gaussian gravity constant used is:
pp = 3.9862677 x 10° km?/sec? .

Neither of these values, taken from reference 14, nor the ''zonal geoid" of Reference 13, is felt to
be the most accurate known to date. They are the values used by the GSFC Tracking and Data
Systems Directorate to calculate the orbit elements of Syncom II from radar and Minitrack ob-
servations. They were chosen to insure consistency between the data of this study and these pub-
lished orbits, inasmuch as the "triaxial" reduction for which this study has been undertaken is not
significantly affected by the probable errors in these values. The second-order tesseral harmonic
constants used in the simulation studies were

J,, = -1.68x10°°

Nap = -18°.

These are the values shown on the ''tesseral geoid below (for the J,, harmonic). At a later point
in the analysis, the slightly different values reported in the abstract were estimated. The most
accurate "zonal geoid" is probably that of Kozai (1962) [See Reference 6], with the following earth
constants;

R, = 6.378.2 km

3.98603 x 105 km3/sec? .

Hg

The earth's gravity potential (to fourth order, probably sufficient to account for all significant per-
turbations on a 24-hour satellite) may be illustrated as follows (following Reference 6, Appendix B):
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18° WEST (A,,)

00

2 R2

.~ (3 sin? ¢ - 1) = 3], :2

cos? ¢ cos 2(>\ - >\22)

3
J’EIORc.

3
J31Ro

2r3

223 (5 sind ¢ - 3 sin ¢>) - cos ¢ cos ()\ - >\31) (15 sin? ¢ - 3)

The earth-gravity field (per unit test mass) whose potential is (B-1) is given as the gradient of
(B-1), or

oy (B-2)

= iL_E:_ - 2 22 A - 2 -
F, = {1+(R0/r) [3/2120 (3sin?¢-1) +9J,, cos?dcos 2 (A-X,,)

+ 2(Ry/1) T4 (5sin?¢=3) (sing) + 6(Ry/r)J;, (5sin?¢-1) cos¢cos (A-1Ay,)

+

60(R0/r) J32cosz¢sin¢>cos 2<}\’>\32) + 60(R0/r) Jis cos? ¢ cos 3(7\-}\33)

-+

5/8(Ro/r)? J,o (35sin*¢-30sin?¢+3) (B-3)

-+

25/2(Ry )2 I,, (7sin?¢-3) cos¢sindcos (A-1,,)

+

75/2(Ry/t) % J,, (7sin? - 1) cos?¢cos2 (A -A,,)

+

525(R0/r)2 Jas cos3 ¢ sin¢ cos S(K—KH) + S25(R0/r)2 Jaa cos* ¢ cos 4(>\—>\‘4)]}
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I
Py = =5 (Rey/)? {600 cosgsin2 (Vo) + 372 (Reyr) Ty, [Bsin?e - 1] sin (h-ny )
+ 30 (Ro/ r) J3, cos ¢psingsin 2 (_)\—X32) + 45 (Ro/r) Jis coszdasinS()\—}\“)
+ 5/2 (Ry/1)2 4, [7sin?¢-3] sindsin (A-Ay) + 15 (Ry/r)? J,, (7sin?é-1] cosdsin2 (A-Ay,)
(B-4)

+ 315 (Ro/r)2J43 cos?dsingpsin 3 (A-Aﬂ)

© 820 (Ry/rf Jya cos® sin4 (A ~Ayy) }-

I

Fy = 7 (Ry3)? {31, singcos ¢+ 6], cosésing cos 2 (A=)
- 3/2 (Ry/r) Ty (5sin®¢ 1) cos¢ + 3/2 (Ry/r) Ty, (15sin” ¢~ 11) sin ¢ cos (A= Ay
+ 15 (Ry/r) T2 (3sin?¢ = 1) cos ¢ cos 2 (A~ Ay)

+ 45 (Ry/r) J 33 cos’Esing cos 3 (A= Ng3) = 5/2(Ry/1)? T4 (7sin? ¢ -3) singcos e
(B-5)
+5/2 (Ry/1)2 T4, (28 sin* ¢ - 27 sin? ¢+ 3) cos (A=A,

+ 30 (Ro/r)2J42 (7 sin2q>—4) cos ¢ sin ¢ cos 2 (>\— >\42)
+ 105 (Ry/1)? T4y (4sin?¢ ~ 1) cos?@cos 3 (A~ hy)

+ 420 (Ro/r)2 J a4 cosd psingcos 4 ()\ —>\44)} .

The actual sea-level surface of the earth is to be conceptualized through (B-1) as a sphere of
radius 6378 km, around which are superimposed the sum of the separate spherical harmonic
deviations illustrated. To these static gravity deviations, of course, must be added a cen-

trifugal earth-rotation potential at the earth's surface, to get the true sea level surface (see Ref-
erence 10).

From Table B-1 and equation (B-3), the fourth-order tesseral geoids of Kaula (September
1963), Kozai (1962), Izsak (July 1963), and Zhongolovitch (1957) have been evaluated for the longi-
tudinal perturbation force on a 24-hour satellite with zero inclination at » = -54.75° over the
earth's surface (see Table B-2). The harmonics contributing to this perturbation are J,,, J,,,
Js35 J4, and J,,. The results of this comparison are:
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Table B-2

Comparison of Longitudinal Perturbation Forces on
a 24-Hour Satellite, From Five Tesseral Geoids.

Ratio of
) Triaxial (J,, )
iull _Flzld Longitude
A ongitu ‘e Acceleration
Ccel.erat;m‘ to Full Field
Ur117t 80 Longitude
107" g_* .
s Acceleration
(A = -54.75°)
Zhongolovitch 7.71 1.06
(1957)
Kozai (1962) 1.08 1.28
Izsak (July 1.27 1.19
1963)
Kaula (Sept. 1.77 1.11
1963)
Wagner (this 2.21 ?

reduction:
March 1964)

*gg is the radial acceleration of earth gravity at the “synchronous” alti-

tude (8 =0.735 ft/sec?).
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Judging from the consistency of the
acceleration ratios among these investi-
gators, the "actual" value of J,, (sepa-
rated from higher order gravity effects)
is probably somewhat higher than the
-1.7 x 107 reported herein. All the geode-
sists reporting in Table B-2 agree that
the next most influential earth tesseral
at ""synchronous' altitudes over most of
the equator is J;;3.




Appendix C

EXPRESSIONS FOR THE INCLINATION FACTOR

Equation (25) gives the inclination factor in the drift causing tangential perturbation {(due to
equatorial ellipticity) on a 24-hour satellite with a near-circular orbit, as

O (max) sin? (i)
2

F(i) = cos(i)+ (c-1)

Ah(max.) is the absolute value of the maximum longitude excursion of the figure-8 ground track of
the 24-hour satellite (with a near-circular orbit) from the geographic longitude of the nodes.

From (18), this longitude excursion function is
Y tan™?! [cos(i)tan@] -4 (C-2)

Differentiating (C-2) with respect to the argument angle 6, the minimax excursion arguments
are found from

d(ony ~ cos (i) sec? 0

T T 0 T T es?(iytan?d (€-3)
Solving (C-3) for siné at A\ (minimax),

SiN €} minimax) [cos (i) +1]¥? | from which

tan G minimaxy - S€C (1) . (C-4)
(C-4) in (C-2) gives

M(minimax) = tan”! [cos (i)sec (i)] - tan!sec (i) .

Thus, since only the absolute value of A\ (minimax) is required,

M (max) = tan”! [sec(i)] - 45° | (C-5)
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where the tan™ is to be taken in the first quadrant. For example: for i = 30° (C-5) evaluates
the maximum excursion as

M(max) = 49.1°-45° = 4.1°,
The nodal argument angle at this maximum longitude excursion is
6 [at Mx(max)] = +49.1° from the nodes.

The assumption in (20) that the excursion in longitude from the ascending node could be approxi-
mated by

O - Ah(max) sin 26
predicts the maximum excursion argument as
¢[at A\(max)] = +45°from the nodes.

This discrepancy in the assumed longitude excursion function is not serious until i > 45° as sim-
ulated trajectories with variable inclination have borne out.

(C-5) can be written as
M\(max) + 45° = tan”l [sec(i)] , from which

tan[A)\(max) +45°] = sec(i) = iiﬁi(mz:{(; ' (C-6)

for i < 45° Solving (C-6) for A\ (max),

i- .
M(max) = Treas (D ! (C-7)

approximately.

Thus the ineclination factor becomes approximately

.2.1_ .
F(i) = cos (i) * 51?26{25;5 :fi @l

= cos (i) + [1_C052(i)]2 _ 2cos(i) *+ 1 - 20205(i) + cos? (i)

cos? (i) + 1

= (C-8)
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For example: For i = 30°

.86603 + 4.1/8 x 57.3 = .8750

F(i)frnm (€C-1)

F(i)h-om (C-8) -8750 .

The agreement of F(i) from forms (C-1) or (C-8) is good to the third decimal place as long as the
inclination is less than 45 degrees. At inclinations higher than 45 degrees, however, the drift
theory following (20) begins to break down because A\(max) is no longer a small angle.
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Appendix D

DERIVATION OF THE EXACT ELLIPTIC INTEGRAL OF DRIFT MOTION FOR
A 24-HOUR SATELLITE WITH A NEAR-CIRCULAR ORBIT: COMPARISON
OF THE EXACT SOLUTION WITH THE APPROXIMATE SOLUTIONS
FOR PERIODS VERY CLOSE TO SYNCHRONOUS

The differential equation (33) of 24-hour satellite drift is
analogous to the equation describing the large-angle oscillations
of a mathematical pendulum (see Reference 11), as in Figure D-1.

The equation of angular motion of the mass m under the ’~ 6,
constant gravity force mg, is

F, = mg,sin8 = m(l.é.?) = mlf (D-1) m
(D-1) can be rewritten as I Fy=mg, SIN 8
I T °
& + (go/1) siné = 0 . (D-2) 1

m
From the theory developed in Reference 11 (pp. 327-335), (D-2) 9o

has an integral Figure D~1—Configuration of a
"mathematical pendulum.”

t (time from 6 = 0) = (I/g,)"? F(k, ¢) , (D-3)

where F(k, ¢)is the elliptic integral of the first kind with argument (or amplitude)
sin @

¢ = sin”! [—m » and modulus k = sin & (max)/2.
Equation (33):
Y + Apsin2y = 0,

with maximum libration angle y,, can be put in the form of (D-2) by the transformation of the de-
pendent variable

¢ = 2y, (D-4)
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with the parameter identification
g/l = 28p - (D-4A)
(D-4) implies the identification

k = siny,, ¢ = sinhl[siny/sinyo] . (D-4B)

The pendulum solution (D-3), under the transformation (D-4)and identifications (D-4A) and (D-4B)
becomes
t (time of drift libration from y = 0)

= (1/2A22)V2 F(sinyo , [sin‘l siny/sinyo]), (D-5)

F(k, ¢), in its full integral form, is

P f__dg__ ,
o (1-Kk?sin2g)1? (D-6)

(where k? = sin?y,,sin?¢ = sin?y/sin? ) for the drift libration. In particular, when ¢ = 7/2;
theny = v,; v, = 0, and the pendulum-drift libration has completed a quarter-period.

Thus, from (D-5) and (D-6), the full period of the long-term drift libration of the 24-hour
satellite ground track about the nearest minor equatorial axis longitude is

77/2
_ dy
T(’)/o) - [8/A22]l/2 1- sin2 .}/0 Siﬂ2k/J
0

EE : (D-17)

The adequacy of the Taylor series expansion approximation of the drift motion in ghe neighborhood
of v,, given in equation (51), may be tested against the exact drift solution implicit in (D-5). Table
D-1 below gives the evaluation of F for arguments within 5° of y, = 60°, using the integral tables
in Reference 12.

Table D-1

Exact and Approximate Drifts of a 24-Hour Satellite from a Stationary Configuration
60° East of the Earth's Minor Equatorial Axis.

At
_ o ¥ ,yl 7” ¢ F AF
Yo = 60 (degrees) | (degrees) | (degrees) | (degrees) | (rad.) (rad.) (da;/s:fre%rgl)

Ay, = 23.2x107° rad/day?| 60.0 60.0 60 90 2.1565 - -
59.0 59.003 59.000 81.7967 | 1.8730 2835 41.619
58.0 58.014 58.001 78.3056 | 1.7564 4001 58.737
57.0 57.029 56.999 75.5595 | 1.6671 .4894 71.846
56.0 56.051 56.999 73.1938 | 1.5923 5642 82.827
55.0 55.077 54.996 71.0617 | 1.5265 .6300 92.487
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In Table D-1, AF is the change in the elliptic integral from the "stationary' configuration at ¥ = 60°
or ¢ = 90° At = (1 /2A22) V2pF, A,,was computed from (30A) with the following gravity-earth con-
stants and for the inclination of Syncom II:

R, = 6378.2 km
a, = 42166 km

Ja = -LTX107°
i = 33°.

v' gives the drift position as calculated from the first righthand term of (51) alone (the (At)? term).
y" gives the drift position as calculated from the first two righthand terms of (51). The "actual"
Syncom II drift in mid-August 1963 began, apparently, at a v, between 48° and 58° east of the minor
axis. Thus, the 16 orbits chosen for the first drift period all should be well represented by the
(At)? -only theory, within the rms error of the longitude observations. Similar exact calculations
for y, = 45° 50° and 55° confirm the adequacy of the (At)?-only theory to apply to the second
drift-period orbits. They also prove the contention in section 5 that, for reasonably small excur-
sions from "synchronism,' the convergence of the Taylor series (51) is adequate if additional
terms are included only when they become of a certain minimum significance to the total drift.
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Appendix E

BASIC ORBIT DATA USED IN THIS REPORT

The Orbit elements for Syncom I in Table E-1 were calculated at the Goddard Space Flight
Center from radar and Minitrack observations made during the slow drift periods from mid-August
1963 to February 1964.

As an example of the estimation of the ascending equator crossing nearest to epoch, consider
the orbit geometry at epoch (Figure E-1).

6 January 1964 at 17.0 hours Universal Time (orbit 2-5) .

Table E-1

Syncom II Orbital Elements, August 1963 to February 1964.

o ‘Argument Right Ascen-
Orbit Epoch (Universal Time) Sen:xn;a]or . .. [Inclination Mean of sion of Fhe
# Year-Month-Day-Hour-Min S Eccentricity {degrees) Anomaly Perigee Ascending
y g g
(km) (degrees) Node
(degrees)

(degrees)

1-1 63-8-22-6-12-14 42164.58 .00018 33.083 24.126 26.285 317.569
1-2 63-8-26-17~0 42164.52 .00016 33.090 190.841| 26.099 317.454
1-3 63-8~31-0-0 42166.02 .00018 33.062 296.125 | 30.073 317.475
1-4 63-9-5-0-0 42166.39 .00012 33.064 333.521) 357.756 317.362
1-5 63-9-9-0-0 42166.35 .00015 33.048 326.207 | 9.077 317.272
1-6 63-9-12-2-0 42166.55 .00015 33.079 3.657 4.697 317.224
1-7 63-9-17-2-0 42166.70 .00018 33.043 12.694 0.581 317.165
1-8 63-9-20-2-0 42167.42 .00018 33.010 359.970| 16.282 317.098
1-9 63-9-27-2-0 42167.51 .00022 33.046 38.922 344.162 316.996
1-10 63-10-1-2-0 42168.88 .00024 33.039 26.615 0.433 316.944
1-11 63-10-8-2~0 42169.14 .00020 33.013 42.889 350.866 316.780
1-12 63-10-14-2-0 42169.78 .00028 32,982 36.727 2.673 316.813
1-13 63-10-22-2-0 42171.51 .00026 32.993 62.833 344.246 316.603
1-14 63-10-30-0-0 42171.09 .00028 32.948 29.865 354.548 316.570
1-15 63-11-6-0-0 42172.15 .00025 32.952 36.699 354.313 316.328
1-16 63-11-12-0-0 42172.51 .00031 32.920 108.239 | 3.425 316.308
2-1 63-11-28-1-0 42165.89 .00005 32.920 222.170{ 203.901 315.976
2-2 63-12-4~-0-0 42167.20 .00009 32.892 39.435 17.564 315.919
2-3 63-12~10-0-0 42167.18 .00010 32.881 51.942 10.958 315.877
2-4 63-12-16-17-0 42168.17 .00007 32.872 300.000| 24.505 315.735
2-5 64-1-6-17-0 42168.01 .00013 32.867 332.997} 11.625 315.544
2-6 64-1-9-6-0 42169.90 00015 32.857 165.031{ 16.992 315.469
2-7 64-1-20-0-0 42171.43 .00012 32.826 29.098 28.842 315.300
2-8 64-1-29-20-0 42171.91 .00019 32.859 37.956 13.171 315.212
2-9 64~2-5-16-0 42172.89 .00019 32.800 321.168{ 36.275 315.075
2-10 64-2-10-19-0 42173.31 00014 32.833 32.517 14.553 314.982
2-11 64-2~17-0-0 42174.89 .00019 32.762 347.774 | 35.551 314.883
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On 6.0 January 1964, the hour angle of the vernal equinox A west of Greenwich (expressed in hours,
with 24 hours = 360°) was

6 hrs 58 minutes 27.484 seconds (from the Nautical Almanac)
On 7.0 January 1964, the hour angle of A was
7 hrs 2 min 24.036 sec.
Interpolating, the hour angle of A on 6 January at 17 hours Universal Time was

0 hours 1 minute 15.042 seconds, or
0.313 degrees west of Greenwich .

In Figure E-1, the orbit angle 27.003° is taken directly as 360° - the mean anomaly, because the
orbit is nearly circular. The reported period for this orbit was

t = 1436.21696 minutes .

P

The earth's sidereal rotation period is taken to be

T = 1436.06817 minutes .

earth

Thus, if the satellite is assumed to traverse orbit 2-5 at a nearly uniform rate, it will reach the
celestial equator at a time when the Greenwich meridian has proceeded eastward from the epoch

15.378 x 1436.21696/1436.06817 = 15.380°.

Thus, the estimated geographic longitude of the ascending equator crossing nearest to the epoch
of orbit 2-5 is

Ascending equator crossing longitude

-(44.456 + 0.313 + 15.380)

I

-60.149° .
The estimated time of this crossing is

15.380°/15°/h- = 1,025 hours after the epoch .
The crossing time (Table 1) is thus estimated to be at

6.751 January 1964 (18.025/24 + 6.0, January 1964) .
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Appendix F

CALCULATION OF THE RADIATION PRESSURE ON SYNCOM II

Consider a flat-plate element 2A, of the surface of Syncom II, whose normal n is at angle ¢
with respect to the sun's rays (Figure F-1). The sun's radiant energy can be thought of as being
made up of a stream of material particles such as dm, moving at the speed of light ¢. If the energy
of each particle is dE, then from Einstein's classical energy-mass equivalence statement,

dm = dE/c? . (F-1)
Upon striking the surface, the incident radiation may:

® Reflect completely off the surface at an equal "reflection' angle, undegraded in energy

® Be absorbed into the body of the plate as thermal energy and partially reradiated in all di-
rections from the surface at a reduced flux, depending on the surface and on the thermal
properties of the plate and body of the spacecraft

@ Be partially "reflected" and absorbed and reradiated, depending on the surface properties of
the plate

An estimate of the radiation pressure on Syncom II will be calculated assuming complete light ab~
sorption with no reradiation. This is not the most conservative condition but will serve to show
the order of magnitude of the effect.

SUN @ & >—

Figure F-1—Flat plate AA of satellite surface, with normal 777
at angle g with respect to sun's rays.
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Light-particle dm has c dnm momentum in the direction of the sun's rays before striking the
plate element AA. Thus (c) dn momentum is transferred to the plate with each light-particle
collision. From Newton's second law, the impulse transferred to the plate in the time of action
dt, of dm alone, is;

dt
[@mna s @, (F-2)

0

dF acts on the plate element in the direction of the sun's rays. Assume that the discontinuous col-
lision processes of (F-2) are so frequent as to amount to a smooth transfer of momentum between
the stream of light particles and the plate; dt can then be replaced by 4t, a small but finite time
interval; (dF), by AF, a smooth, constant small reactive force on the plate element 2A; and dm can
be replaced by Am, a small but finite light particle mass impinging on the plate surface AA in At
time. (F-2) then becomes

AF (radiation force) At = (c)Am, or

AF (radiation force) = (c)%% : (F-3)

By the mass-energy equivalence relation (F-1) written for the finite small elements involved in
the continuous momentum transfer,

Am = AE/? (F-4)

where AE is the energy flux falling on plate element AA in At time. Clearly,

AE = pOlAcos 8 (At) (F-5)

where p is the sun's energy flux in units of energy/time-area, and A cos ¢ is the projected area
of the element in the direction of the sun's rays. Combining (F-3), (F-4) and (F-5);

AF/AAP = projected area-radiation pressure = p;, = % ' (F-6)
in the direction of the sun's rays

(2A, = DAcosé = projected area of the plate element in the direction of the sun's rays.)

The value of p outside the earth's atmosphere is estimated to be (see Reference 9)

95.5 ft-pounds/ft?-sec.

ke
]

9.835 x 108 ft./sec.

0
1]
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(F-6) thus becomes;

p, (projected area-solar pressure
against a fully absorbing _ ~7 2
surface in the direction of the = -9725 X 1077 pounds/ft.
sun's rays)

(F-7)
Figure F-2 shows the configuration of Syncom II with respect to the sun during the drift. For
the cylindrical configuration in Figure F-2, from (F-7);
F (absorb-total) = F(absorb-body) + F(absorb-end) = .9725 X 10~7 (HD cos ¢ + 7D? sin 6/4)(F-8)

The weight of Syncom II in the 24-hour orbit (including the apogee motor) is about 75 pounds.
Other parameters are:

H = 15"
D = 28"
6 = 21° (in late August 1963) .

SUN

F(ABSORB - BODY)

F(ABSORB —-END)

F(ABSORB - TOTAL)

Figure F-2—Configuration of Syncom |l with respect to the sun during drift.
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Thus, HDcos & +7D%sin6/4 = 613 in? = 4.25 ft?; from (F-8),
F (radiation force with total absorption) = 4.13 X 10”7 pounds .

The mean solar gravity force on Syncom II in orbit is given as

p, x 75/32.15

F (solar gravity) *= —(r1aUy7
where 1 astronomical unit (A.U. = the earth's mean distance from the sun) * 92,900,000 miles

= 4.9 x 10" ft.
u, = 333,000.; = 333,000 X 1.40765 x 10'¢ ft’/sec’ = 4.18 x 10* ft3/sec?

Therefore

F(solar gravity) . 4.18 X 10?* X 75
on Syncom II (4.9)2 x 1022 x 32.15

= 4.07 X 10" 2 pounds .

It is evident that solar radiation pressure on Syncom II causes perturbations which are insignifi-
cant compared to solar gravity perturbations.
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